worlde.png

Hardaway, J.A., Mazzone, C.M., Pati, D., Kim, M., Jensen, J., Diberto, J., Shiddapur, A., Sugam, J.A., Saddoris, M.P., Tipton, G., McElligott, Z.A., Bruchas, M.R., Stuber, G.D., Jhou, T.C., Bulik, C.M., & Kash, T.L. (2019). Central amygdala Prepronociceptin-expressing neurons mediate palatable food consumption and reward. Neuron, 102 (5), 1037-1052. e7

Saddoris, M.P., Siletti, K.A., Stansfield, K.J., & Bercum, M.F. (2018). Heterogeneous dopamine signals support distinct features of motivated actions: implications for learning and addiction, [Special Issue: Addiction]. Learning & Memory, 25: 416-424.

Saddoris, M.P., Sugam, J.A. & Carelli, R.M. (2017). Prior cocaine experience impairs normal phasic dopamine signals of reward value in accumbens shellNeuropsychopharmacology, 42(3):766-773

Dolzani, S.D., Baratta, M.V., Amat, J., Agster, K.L., Saddoris, M.P., Watkins, L., & Maier, S.F. (2016). Activation of habenulo-raphe circuit is critical for the behavioral and neurochemical consequences of uncontrollable stress, eNeuro, 3(5).

Saddoris, M.P., Wang, X., Sugam, J.A. & Carelli, R.M. (2016). Cocaine self-adminstration experience induces pathological phasic accumbens dopamine signals and abnormal incentive behaviors in drug-abstinent ratsJournal of Neuroscience, 36(1): 235-250.

Saddoris, M.P., Cacciapaglia, F., Wightman, R.M., & Carelli, R.M. (2015). Differential dopamine release dynamics in nucleus accumbens core and shell reveals distinct signals for error prediction and incentive motivation. Journal of Neuroscience, 35(33), 11572-82. 

Saddoris, M.P.*, Sugam, J.A.*, Stuber, G.D., Witten, I.B., Deisseroth, K. & Carelli, R.M. (2015). Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based decision makingBiological Psychiatry, 77(10), 903-15.

West, E.A., Saddoris, M.P., Kerfoot, E.C., & Carelli, R.M. (2014). Differential activation of prelimbic versus infralimbic prefrontal cortical activity before and following extended abstinenceEuropean Journal of Neuroscience,39(11), 1891-902.  

Cerri, D.H*, Saddoris, M.P.* & Carelli, R.M. (2014). Nucleus accumbens core neurons encode value-neutral associations but not inferred value during a sensory preconditioning taskBehavioral Neuroscience, 128(5):567-78.

Sugam, J.A.*, Saddoris, M.P.* and Carelli, R.M. (2014). Nucleus accumbens neurons track behavioral preferences and reward outcomes during risky decision makingBiological Psychiatry, 75(10), 807-16.

Saddoris, M.P., & Carelli, R.M. (2014). Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learningBiological Psychiatry, 75, 156-64. (Featured article with commentary by B.T Saunders & P.H. Janak, Nucleus accumbens plasticity underlies multifaceted behavioral changes associated with addictionBiolPsych, 75, 92-3.)

Saddoris, M.P., Sugam, J.A., Cacciapaglia, F. & Carelli, R.M. (2013). Rapid dopamine dynamics in the accumbens core and shell: Learning and actionFrontiers in Bioscience (Elite Ed.), 5, 273-88.

Cacciapaglia, F., Saddoris, M.P., Wightman, W.M., & Carelli, R.M. (2012). Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose. Neuropharmacology, 62, 2050-6.

Saddoris, M.P., Stamatakis, A. & Carelli, R.M. (2011). Neural correlates of Pavlovian-to-instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-administration. European Journal of Neuroscience, 33, 2274-87. (Featured articled with commentary by Smith, K.S. (2011) Neuronal correlates of normal and drug-potentiated Pavlovian-instrumental transfer [Commentary on Saddoris et al.], European Journal of Neuroscience, 33, 2273-4.)

Saddoris, M.P., Holland, P.C. & Gallagher, M. (2009). Associatively learned representations of taste outcomes activate taste-encoding neural ensembles in gustatory cortexJournal of Neuroscience, 29, 15386-96.

Schoenbaum, G., Saddoris, M.P., & Stalnaker, T.A. (2007). Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectanciesAnnals of the New York Academy of Sciences, 1121, 320-35.

Schoenbaum, G., Setlow, B., Saddoris, M.P., & Gallagher, M. (2006). Encoding changes in orbitofrontal cortex in reversal-impaired aged ratsJournal of Neurophysiology, 95, 1509-17.

Pickens, C.L.*, Saddoris, M.P*., Gallagher, M., & Holland, P.C. (2005). Orbitofrontal lesions impair use of cue-outcome associations in a devaluation taskBehavioral Neuroscience, 119, 317-22.

McDannald, M.A.*, Saddoris, M.P*., Gallagher, M., & Holland, P.C. (2005). Lesions of orbitofrontal cortex impair rats’ differential outcome expectancy learning by not CS-potentiated feedingJournal of Neuroscience, 25, 4626-32.

Saddoris, M.P., Gallagher, M., & Schoenbaum, G. (2005). Rapid encoding of predicted outcome in basolateral amygdala depends upon input from orbitofrontal cortexNeuron, 46, 321-31.

Schoenbaum, G., Ramus, S.J., Shaham, Y., Saddoris, M.P., & Setlow, B. (2004). Prior cocaine exposure causes deficits in odor discrimination learning and reversal similar to orbitofrontal lesionsEuropean Journal of Neuroscience, 19,1997-2002.

Burwell, R.D., Saddoris, M.P., Bucci, D.J., & Wiig, K.A. (2004). Corticohippocampal contributions to spatial and contextual learningJournal of Neuroscience, 24,3826-36.

Schoenbaum, G., Setlow, B., Nugent, S., Saddoris, M.P., & Gallagher, M. (2003). Lesions of the orbitofrontal cortex and basolateral amygala disrupt acquisition of odor-guided discriminations and reversalsLearning and Memory, 10, 129-40.

Schoenbaum, G., Setlow, B., Saddoris, M.P., & Gallagher, M. (2003). Encoding of predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdalaNeuron, 38, 855-67.

Pickens, C.L, Saddoris, M.P., Setlow, B., Gallagher, M., Holland, P.C., & Schoenbaum, G. (2003). Orbitofrontal lesions impair use of cue-outcome associations in a devaluation taskJournal of Neuroscience, 23, 11078-84.

Bucci, D.J., Saddoris, M.P., & Burwell, R.D. (2002). Contextual fear discrimination is impaired by damage to postrhinal or perirhinal cortexBehavioral Neuroscience, 116(3), 479-88.

Schoenbaum, G., Nugent, S., Saddoris, M.P. & Setlow, B. (2002). Orbitofrontal lesions in rats impair reversal, not acquisition, of go, no-go odor discriminationsNeuroReport, 13(6), 885-90.

Schoenbaum, G., Nugent, S., Saddoris, M.P. & Gallagher, M. (2002). Teaching old rats new tricks: Age-related impairments in olfactory reversal learningNeurobiology of Aging, 23(4), 555-64.